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ABSTRACT

Let S denote the space of bivariate piecewise polynomial functions of
degree € k¥ and smoothness p on the regular mesh generated by the three
directions (1,0), (0,1), (1,1). We construct a basis for S in terms of box
splines and truncated powers. This allows us to determine the polynomials
which are locally contained in S and to give upper and lower bounds for the
degree of approximation. For p = |[(2k=2)/3], k Z 2(3), the case of minimal
degree k for given smoothness p, we identify the elements of minimal support

in S and give a basis for § = {f @€ S: supp £ [} 2}, with Q a convex

loc

subset of n?.
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SIGNIFICANCE AND EXPLANATION
Local support bases for piecewise polynomial spaces are important for

applications such as finite element methods, data fitting etc. 1In [BH1] a

-
.

general construction principle for such "B-splines" was used to obtain the so

Lateasn n

called box-splines. They have a particularly reqular discontinuity pattern

and coincide in special cases with standard finite elements.

BEK - A0S

,-mf~§§ This report investigates the use of translates of certain bivariate box-

HARAENA - Lans t il

splines in the construction of a unified theory for piecewise polynomial
functions on regular meshes.

A simple mesh is considered, derived from a square mesh by drawing in the
same diagonal into every square. The space § of piecewise polynomial
' functions of a given degree and smoothness, and with discontinuities (in some
derivative) only across lines of that mesh is considered. We show that the
box splines and their transla;es provide a basis for the,‘iocal' part of S
w and use the technigues of.LBH;T to analyse the approximation properties of S.
The report stresses the:importance of local support bases which are

desireable for applications Such as finite element methods, smoothing of data

and approximation in general. Our results should be useful for the further
investigation of smooth piecewise polynomials, in particular on regular meshes

(c.f. [CW]), [si], [S1l) for related work).
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Bivariate box =rlines and smooth pp functions on a three-direction mesh

C. de Boor and K. H8llig

0. Introduction. This paper records further results of our continuing investigation of
certain multivariate B-splines. It follows [BH1] in which we discussed general properties
of box splines and the spaces spanned by translates of a box spline.

In the present paper, we explore the question to what an extent box splines may be
ugseful in the study of spaces of smooth pp (:= piecewise polynomial) functions in which

they lie. We restrict attention to the simplest interesting situation, that of the space
] .

s = 'k,A

of bivariate pp functions in cf , of degree € k , on the mesh A obtained from a uniform
square mesh by drawing in the same diagonal in each square. Even in this simple setting, we
find much challenge; in fact, we must leave some obvious questions unanswered for the
present.

The specific questions we tried to answer are: (i) Are these B-splines "basic", i.e.,
to what an extent do box splines provide a basis for S ? The answer is that they provide a
spanning set for the "local part”, but have to be augmented by certain truncated powers to
give a spanning set for all of S . In certain special circumstances, they even provide a
basis for all finitely supported elements of S . But this happens rarely, because the
answer is "Usually not®” to the question: (ii) Are these B-splines "minimal", i.e., does
S contain no element with support strictly inside that of a box spline? The box splines do
provide material help in answering the question: (iii) What is the approximation order
from S ?

In outline, the paper is as follows: In Section 1, we introduce the relevant notation
in the process of specializing the general results of [BH;] concerning box splines to the
specific context of the bivariate 3-direction mesh 4 . We study the space spanned by

certain translates of one such box spline, prove these translates to be linearly

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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independent even locally, and characterize all polynomials in their span. In Section 2, we
show that S is spanned by certain box splines and their translates together with certain
truncated powers. These latter functions are zero on a halfspace and agree with a suitable
polynomial on the complementary halfaspace. This permits us to show, in Section 3, that, in
effect, the approximation order from 8 is entirely determined by how well one can
approximate from §,.. := span of box splines contained in 8 . This, in turn, can be
related to the question of which polynomials are contained in S1oc ¢+ We 'answet this
question in full and thereby obtain upper and lower bounds on the approximation order
from S which coincide in some cases and are, in any event, very close when p is as
large as possible, i.e.,

P = plk) = |(2k-2)/3] .
We also give a conjecture concerning the approximation order for p < p(k) .

In Section 4, we look for elements of minimal support in S . These are provided by
the box splines in case k = 1(3) and »p = p(k) . For k 2 0(3) and p = p(k) , there are
in S elements of smaller support than that of the box splines. These were first discussed
by Prederickson [Fr] . In either case, we show that these minimal support elements provide
a basis for all finitely supported functiong in S . We also discuss the case k = 2(3)
and p = p(k) in which the degree is not minimal for the given p to illustrate that the
search for minimal support elements can be quite frustrating when k is not minimal. Only
for sufficiently large k (with respect to p ) does the minimal support question become

simple again.
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1. Box splines on a three—-direction mesh. In [sa,]. the box spline "E is defined as

! . the distribution on R® given by the rule

n
Mo [ el 2 g)a M
- = {0,1) i=1

for some sequence = := (§ 1): in R® . In this section, we specialize the general results
of (BH,] concerning M. and the span

b s; = lp.n(lls("v) )ves®
a

of its integer translates to the simple situation

mn= 2, E = (d‘:t, a8, d3xt) (2)

2
Ll‘! with the three directions given by

d, = ey, d2 1= ey d3 1= 8y + &y ¢
By this we mean that ran £ € (61, a, d3} and that r, s, t are the relevant direction
multiplicities which characterize g8, i.e.,
r := |{1i: T d1}| . 8 := |{i: Ei’ dz)l , and t := |{i: Ei- 63)' .
This special choice of Z allows us to delve more deeply into the details in a setting of
possibly practical importance.

In later sections, we will write

"r..,t instead of M. .
For the remainder ;)f this section, though, we write
M instead of “3

and write

M, = M(e-v)

for any particular

v € vV = 3%,
" We now study
§ := S. = span (Mj)y .

S 1is a subspace of

3 T s T PP Functions of degree € k on the partition 4,
; ’
g with
r k := n=2
3




and A the partition of 2% into triangles obtained from the three families of meshlines
v + zd1 s, VRV, ZE€R.
We have foregone the opportunity to make the symmetries in A more apparent by having the
three families of meshlines intersect each other at an angle of 120° (as is done, e.g., in
(Fr]). This would needlessly complicate the notation. It is sufficient to note that any
permutation of the meshline families can be accomplished by some linear map on r2 ., and
the corresponding change of variables leaves 'k,A{\ cp invariant.
The smoothness of M depends on the direction multiplicities. We have
X e l:".(.d)sgc(d-ﬂ’
with
d = (n - max {r,s,t} ) -1
the number defined in [BH,) (2.6)] as evaluated for our special case. Since n=r + g + t
+ it follows that, for fixed degree k = n-2 , we get maximal smoothness by choosing
max {r,s,t} = [(x+2)/3] .
Then, for k = 3u + i , the corresponding maximal 4 1is
d(k) = 2p+ i = UZk-H)/SJ ' (3)
i==1,0,1 . For k = 3u+1 , there is just one choice,
r=38=+t=u+1,
while, for k = 34 or k = 3u=1 , there are three choices for (r,s,t) .
Recall from [BH,; Cor.2 of Thm.5) that d also governs which polynomial spaces are
contained in S . Precisely,
1,&5 iff mca. | (4)
Of course, as we will see shortly, some polynomials of degree higher than m may also be
in s .
It follows from (1) that
supp M = { I} A(1IE, : A e [0,N™} = {Z] Ai)a, : A € (0,r]x[0,s)x[0,8]} .
Thus, supp M is a hexagon composed of
N := rs + rt + st

triangles of A which are translates of the triangle spanned by d, and d3 and a like




number of triangles which are translates of the triangle spanned by dz and d3 « This
implies that exactly N M,'s have any particular triangle of A in their support.
Since
det(dy, d3) =1 for 1 23,
we conclude from [BH,;Prop.4] that (M), need not be linearly dependent. We now prove

much more.

Proposition 1. (M,) ., is locally linearly independent, i.e.,
{Mv : supp Mvnn $d) (5)

is linearly independent over any open Set A contained in some triangle of 4 .

Proof. Since (5) contains exactly N elements, it is necessary and sufficient to
prove that S contains N functions which are linearly independent over A . This latter
condition is shown to hold once we show that dim (s f\‘l) > N . It then follows,
incidentally, that dim (S Ax) = N . Here,

SNAT = '5
is the linear space of all polynomials contained in 8 .

The proof consists in identifying various elements of tg « For the specific & , we

have from (BH,sTheorem 5] that

r. s x t s t
" ker D, D, N ker D, (D1+D2) n ker D2 (D1+Dz) . (6)

Correspondingly, we would like to specify linearly independent elements of 13 in the form

p<r, O0<s, T=t

I, 1,1 t(1) for { p<r, om=s, <t '

p=r, 0<s, <t
with Iy0 15, 13 right inverses of Dy + Dy, Dy+D, respectively, and 1 denoting the
function xt—* 1 . But, since each of these integral operators fails to commute with at
least one of these differential operators, it is tricky to make the construction precise in
this form.

Instead, we single out the two classes
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S

A, = {Qas a(1) < r} and A, = “a : a(2) < s}
of monomials
¢, = ()a/al .
Then A, C ker Df ¢ Ay & ker 02s . therefore A;N\A, provides a linearly independent set
of rs elements in tg . In addition, we pick a set B -mn(n,\az) of rt elements
and a set 325 span(A,\A,) of st elements in ¥; and are then certain of the linear
independence of the total collection
(AyAA,) VB4 UB,
as soon as we prove that both B, and B, are themselves linearly independent.
To construct B, , we consider the right inverse J of D1+Dz for which
(3£)(e,00 = o .
To find JQQ s, we write J¢ a ™ L cB.B and consider the resulting linear system
t °8(08'°1+.6-e) = 4%
2
z cBQB(-,o) = 0
This gives cg = 0 for B(2) = 0 and therefore cg = 0 for |8| # |la| + 1 and for

I8l = lal + 1 with B(1) > a(1) , hence also Care "~ 1 . In conclusion,

2
'ua e .Mez ’

with

% = ¢g + span {01 s Iyl = 181 , Y(1) < B(1} .

Therefore, more generally,

. (7)

ae) € 0
8 2

Bte
Now set
i
B, = (J ’(j'._1) H 1.i'ooo't) j-O,...,r-1} .

By (7),

i

I8 5,8-1) € ¥(5,e-141) S PR (A,\a,) for 10, y¢r,
hence B, < span (A1\ Az) . as desired. This also implies that B, € ker 01' + hence

By S ker D‘rbzs f\ker 01‘(D1+Dz)t .

But

i 1 8
("1*"2) (s o(j'._”) - ’(j'._” Cker D, ,




therefore (D1+Dz)"[n1] € ker Dz° ¢+ hence also B, & ker Dz'(Dﬁ-Dz)t + We conclude that
. B, S .
Finally, we need to show the linear independence of B, . For this, consider the

matrix C of polynomial coefficients for the elements of B, s, Lee,,

Jioj"_, =3 L C(i,jtﬂ) ’B r] 1‘1,.-.@, j'o,--.,r-‘ .

Choose the (reverse lexicographic) ordering
i+j < htk
(1,9) € (h,k) := or .
i+j = htk and 1 < h
Then C is unit lower triangular in the sense that
i
J ’j,ﬂ-i € ‘j,l-ﬂ'i + 'P‘ﬂ{’s : B < (J,8=141)} , all 3,14,
hence of full rank. Thus B, is linearly independent.
The construction of B, proceeds in exactly the same way, with the roles of the two

independent variables interchanged. |||

For exampie, take (r,s,t) = (2,2,1) . Then n=r + s+t =5 , hence k = 3 . Also,
d=4(3) = 2, hence M is a piecewise cubic c‘ function. Now
AR, = {oc : a(1), a(2) = 0,1}
forms a basis for 'l1 1 s= bilinear polynomials. PFurther,
’

B, = {J"Qj" : i=1; §=0,1 } ,

with
T0,1 " 99,2 I3 Té T4 S5
We determine ¢ from the condition that (01"‘02)-701', - 0,‘, « This gives
%o,2% 4,1 ,2 = 4,0
hence ¢ = -1 . Thus B, = {00'2 v 01'2 - 00'3} « By symmetry,
B, = (02'0 P 02'1 - 03'0) « Therefore, altogether,
Yy T Ty toepan(dy - g 30 45,0 " 430!

in case & = (01, o', 02, 02, '1“2) .




Corollary 1. For any triangle t of A , a bagis for . is provided the N

nontrivial polynomials which agree with M, on 7t .

Corollary 2. If p € ¥ agrees with M on some triangle of A, then pé€e x..

Remark. While Corollary 1 is quite special, Corollary 2 is valid for an arbitrary box
spline M in any number of dimensions. This is a consequence of [BH,; Theorem 5] and is
due to the fact that any polynomial p which agrees with M on some open set is
necessarily mapped to 0 by any differential operator Dz for which DM is supported

only on certain hyperplanes.




2. Spanning sets and local bases. In this section, we give a truncated power basis
for I:’A(Q) , with Q any rectangle bounded by A-mesh lines. This would allow us to
verify the dimension formulas of [cw,] for this space. We also give a spanning set for

'::A itself which, though finitely linearly independent, permits nontrivial infinite
linear combinations which add to zero. Its main feature is that it consists of finitely
supported functions, viz. box splines, on the one hand and of functions supported on half
spaces and agreeing with some polynomial there on the other. These latter functions do not
contribute to the approximation order obtainable from the scale (l:‘hA) ¢ as we will show
in the next section. This means that the approximation order is no better than that
obtainable from the span of the relevant box splines, and this fact allows us to give upper
and lower bounds on the approximation order which differ by at most two in case p is as
large as possible.

Recall from [BH1] th:.c Dahmen's truncated powers [D] can be thought of as shadows of
the standard cone R," : With E := (Ei): in R" , the corresponding truncated power or

cone spline cE is, by definition, the distribution on » given by the rule

cg:el— [ 4 2‘1‘ MiE ) ax .
R
+
Since M_:¢ |—> [ N ¢(t';x(i)ei) d\ , it follows that
- {o,1})

’
c. = L 2 M_(* - v) (1)
g vez? ol

Recall from [BH1] that, for 2 in £,

2°s ™ Cz\z * @)
Now specialize to the setup of Section 1, i.e., to the specific sequence

g = (d1:r, dzss, dazt)

consisting only of the vectors d1 = eq, d2 = ey , and d3 = e1+e2 in R2 , and therefore

characterized by the corresponding direction multiplicities (r,s,t) . It follows from (2)

that
s+t-2 d
Cg has all derivatives of order € { r+t-2) continuous across span({di}) . (3)
r+s-2 d3
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Correspondingly, the univariate function “5 given by the rule

"3") t= cg(zn-z) , all z eRr,
is a univariate B-spline, i.e.,

cz(z,1-2) = cM(z|0:r, Yo:t, 1:8) (4)
for some positive Cg ¢

Here is an outline of what is to follow. We show that, near a lower left corner of its

P
k,A

For this, we split £ into its homogeneous components. Being homogeneous, each such

support, any f € w can be written as a linear combination of certain truncated powers.
component is determined by its restriction to a line which “cuts across® the corner. Such a
restriction is a univariate spline, hence uniquely representable as a linear combination of
certain univariate B-splines, i.e., of restrictions of certain truncated powers.

Next, on subtracting from f this linear combination of truncated powers, we obtain a

new element of =% whose support is inside that of f and offers lower left corners, to

P
k,A
the right and/or above, for further “"peeling off".

We begin with a study of the simple pp space which models the behavior of £ € ::' A
near a lower left corner of its support. We denote this space by

S(<k,v) 1= w:“‘
and mean by this the space of all pp functions of degree € k with support in &2 and
possible singularities only across the three rays

R4, , i=1,2,3 .
In addition, we think of VvV here as a 3-vector, with V(i) indicating that all
derivatives of order € V(i) are required to be continuous across !'_dl s 1=1,2,3,

Let
By = (£ fzx) =2'ex) , all xe R’ zem, }

denote the collection of all functions on w2 (positively) homogeneous of degree L . As is
well known,

L z:k(n"n"‘) ’

so it makes sense to talk about the homogeneous component of degree & of a polynomial. We

10
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now make the same claim for S(<k,v) . With
s(4,v) 3= H‘AS(‘k,V) ’
we claim
Lemma 2. S{(<k,v) = @ S(L,v) .
2k
Proof. Only the inclusion "C" requires proof. To prove this inclusion, it is
sufficient to show that the pp function made up of the ith degree homogeneous components of

an element of S(<k,v) is again in S(<k,Vv) . This follows from the following

Claim. If a polynomial p vanishes to order p along the ray Rd , 1.8.,

n"p-o on l‘_d for |al € p,

then each of its homogeneous components also vanishes to order p on R4 .

Proof. Assume without loss that 4 = e, . Since l:)1 .'p =0 on R, e, for L < p, we
must have
p = ()(pﬂ,o)q
for some polynomial q . Writing

p =: tp‘ with p‘el-lz,an!.,
A<k (p+1,0)
we conclude that each Py has the factor () ‘ + therefore vanishes on Re, together

with every derivative of order < p+1 . (In particular, Py = 0 for L < ptt ). |||

We took the trouble to express S(<k,v) in terms of its homogeneous components
S(%,v) since, on S{(%,v) , the linear map R given by the rule
(Rf)(2) := f(z,V-2) , all zeRr,
is 1-1. This follows from the fact that, for any f e ﬁ.' ’
£0z,A00-2)) = AR , all AeRr ,zem,
hence such f is determined on the entire halfapace x(1) + x(2) >0 once Rf is known.
We claim that R carries sS(%,v) onto the univariate spline space

s“(ﬂ.,v)

"
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which consists of all pp functions g of degree € £ on R with breakpoints 0, 1/2, 1,
with support in (0,1] , and with
0 1
gec” ! near g = {1/2} it 1-{3} .
i 1 2
Indeed, R carries all of 8S(<t,v) into s“(<£,V) . In addition, we recall from (4) that,
with
i = (d1:!, dzzl, d3:t) P
R carries the cone spline C. to a positive multiple of the univariate B-spline
M(*|0:x, 1/2:t, 1:8) .

This implies that, with

(5,) = (a:0-v(1), 4;:2-9(3), a:8-%2)) ,
the cone splines C are in s(%,v) , and R carries these to a basis for

Cyreerrbinne
s“(<l,v) . Consequently, these cone splines must form a basis for S(£,v) . In particular,
3
aim 5(2,v) = (] (-v(1)), - 21 ) .
Therefore
3
dim 8(<k,v) = I, (E] (#=vti)) = 21 ), . (s)

Remark. This formula shows that l:'A contains no finitely supported functions unless
p is suitably small: If f € l;‘A\\ 0 has finite support, then its support must contain
a "lower left corner", i.e., a mesh square Qv 1= (v(1),v(1)+1]) x[v(2),v(2)+1] along whose
left and lower edge f vanishes to order p . This implies that f agrees on Q, with
g(e*-v) for some g € S(<k,p,p,P) . This in turn implies that dim S(<k,p,p,p) > 0 , and,
by (5), this is equivalent to having p < (2k-2)/3 . This conclusion was reached in [BD],
using the same simple arqument of cutting across such a lower left corner of the support,
as is used here. We realized only recently that this conclusion can already be found in
(Pal.

We are now ready to give a cone spline basis for

TR LU SR LT

We use the translation map Tv given by the rule

(va)(x) 1= f(x = v) .

12
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Proposition 2. Let Q = (0,M+1]x[0,N+1] . Then ‘I:'A(Q) is the direct sum of the

spaces T S(<k,v ) Io with

(=1,-1,p) , v = (0,0)
(=1,0,p) , v = (x,0)

Vo= . all vev, = vn(io,Mx(0,N)) , and x,y> 0 .
(p,=1,0) , v =(0,y)

(p,pep) , v = (x,¥)

Consequently,
P - -
dim WP (Q) = Ty 1 4 (1-p), + 204HN) (2-p), + mi(3(2-p), - -1 ), , (6)

and the restriction to O of the cone splines

c (o-v) , all i, with (g ) := (4 :8v (1),4,:2-v (3),d, :2-v (2))
zi'.“';i+‘+1 j 1 v 3 v 2 v N

for L <k, ver .

forms a basis for w° Q) .
— = k,A

Proof. For any choice of v, o the spaces 'rvs(<k, vv)| Q are in direct sum. For the
specific choices of v, given, they are all in ‘l: A(Q) « Thus it only remains to show
r
that ‘l: A(Q) is contained in their sum.
’
We proceed by induction. For this, we use again the (reverse lexicographic) ordering
vl < |w|
vV<Ew 3= or
vl = |w| and w(1) < w(1)

which provides a total ordering for VQ « We again use Qv to denote the unit mesh square

whose lower left corner is v . The induction hypothesis to be advanced is the following:

For all v < w , there exists £, e rvs(<k,vv)|Q so _that
§ = f£-1 £
w vww v

vanishes on U Q, + In order to advance this hypothesis, we now show that, in its

v<w
consequence, 6w agrees on Q  with some f_ e Tws(<k, vw) . There are four cases:

(i) w = 0 . Then 6" = £ , hence it agrees with some f_ € s(<k,~1,-1,p) .

(i1) w= (1,0) for some i > 0 . Then 6" vanishes to order p on the segment

13




ix(0,1]) , therefore agrees on Q  with some f_ e t's(<k,-1,p.p) .

(i11) w= (0,)) for some j > 0 . Then 6' vanisheg to order p on the segment
{0,11xj , therefore agrees on Q6 with some £ € tws(tk,p,-i.p) .

(iv) w= (i1,3) for 1,3 > 0 . Then 6' vanishes to order p on the left as well as
on the lower boundary segment of Q ¢ therefore agrees on Q with soms fv e
r's(ﬂt.p.o.p) .

Since supp £, G t'l+2 <€ \ (V) Q, + this advances the induction hypotheais, since it

viw

implies that 6' - t' vanishes also on Q. as well as on VLJ' Q

The dimension formula (6) now follows from (5) . |||

Since M and N are arbitrary positive integers, we obtain the following

Corollary. For Q = l’z, ‘l: A(Q) is spanned by the restriction to Q of the cone
’
2
splines listed in (7) (with VQ =-z.

Next, we investigate the relationship of I: A(Q) to l: Ale° These two spaces are,
14 ’ Q
in fact, the same, but this is not clear a priori. It is obvious that
()
L} L
x.ale € "k8lg
For the converse containment, it is necessary and sufficient to show that every f @

Po) =y P
Ac (Q) 1 'k,A(Q) .

‘l: A(Q) can be extended to an element of l: s BY Proposition 2, this is established
’ L}

once we show that, for each v @€ VQ ' ‘vs“k'vv)lq can be extended to a subset of l:'A .
and this is obvious as long as vv = (p,p,P) « This leaves three cases:

(1) “v = (=V,p,p) « Then, for i=1,...,p*1,

C 1= C
i ‘1"""14-:4»1

involves the direction 4, L42-1 times, i{.e., more than £-p times, hence fails to be in
c® across R,d, . Recall from (4) that the restriction RC; of C; given by
(Rci)(t) - Ci(t,‘l-t) , all teRr,

is a scaled univariate B-spline involving just the three knots 0, 1/2, and 1, and the

14




latter two no more than 1L-p times. We can therefore write RC; on (0,11 as a linear
combination of the truncated powers

4

/2=, (0=9F, rer,e0t .

Since C; is homogeneous of degree £ , this implies that, on &2, ci itself is a
linear combination of the truncated powers

R=r¢ * \ r

Ti,t,r' xl—> (dix) (dix]_’ ' (8)

i= 2,3, and r = p+1,...,8 , with

L ] *
dz = e, d3 1= 01-02 ’
and these truncated powers are all in 'l: A" We conclude that
14

2
on RS, S(<k,v. ) & S(<k,p,0.0) + lpln('ri'l't: i=2,3; p<rdack} . (9)
(i) vv = (p,~1,p) . In this case, we conclude that we can write the offending cone
splines as linear combinations of the truncated powers
L-r, * r L-x, * r
x> [d1x) (d1x)+ and x> (dgx) (-dax)* .
p<r<€<L <k, with

d = ‘2 .

- ¢

This implies that,
on I+2 R s(<k,vv) € 8(<k,p,p,P) + spcn{'.l'i""r: i=1,3; p<retck} + L (10)

}4".

- *
the last summand because the function x |—> (dax)" r(-dax) :' is in span{T X

3,8r
(1ii) v, " (-t,-1,p) . Por this case,
2

s(!,\iv) = 8'(\1 on l‘_
for 2 <p ., For L>9p , Y has either 4, or (l2 but never both appearing more than
L=-p times. This implies that

s(‘kp"v) g ¥ + S(<k,p,0p,p) + S(<k,~1,0,p) + S(<k,p,~1,P)

k
Thus, using the other cases, we find that,
2
on R, s(<k,vv) € s(<k,p,p.p) + span{'l'l’l'tz i=1,2,3; p<r<t<k) + L (11)

This establishes most of

15
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Theorem 2. Let Q = (0,M+1]1x(0,N+1] . Then

P - g
lk'A(Q) lk'A T (12)
Further, on Q ,
p -
lk'A Ik + T+ 8 (13)
with
T := gpan{ Ti,r,l(. - 2d,) : i»1,2,3; p<rét<k } (14)
and
2 A )
S = .pan{ Hz(' - z+ ) 1 2= (‘1""'ci+l+‘l)' 1-1,...,3('.-9)".-1: 2<k }l (15)
and

(g)) = (4 it-0, & it-p, dpt-0) .

Proof. We only need to prove (13). But this follows from (12), from Proposition 2, and
from (9)-(11), using (1) to convert the cone splines into linear combinations of

corresponding box splines. |||

It is easy (but perhaps not all that useful) to obtain from Theorem 2 a spanning set
of the same form for all of ':,A . lat 91, 92, 93 be the three domains into which R2
is subdivided by the three rays R4, R.d,, and Rdy , with 01 = l¥2 « For given f €
'ﬁ,a + we may choose by Theorem 2 an f, € L + T+ 8 which agrees with £ on 01 « The
function f - £, is in li'A and vanishes on 0‘ . hence vanishes to order p on an1 « In
effect, the component f1'T of f, from LY + T insures that f - ft,r vanishes to
order p on 301 « This makes it possible to write f - f1,T on 91 as an element 51'5

of the span of the box splines listed in (15). An analogous argument therefore establishes

the existence of an element '2,7 in

span{ x}— (di(x-s_a‘))"'(-a;x)" 1 1=1,2; pe<rét<k }

[ LIV span{ 'ri"'t(- - z_di) 1 1=1,2) p<rdték } g "W tT
80 that g := f - f1,T - fz.r vanighes to order p on R_dy . Since leT vanishes on
n‘ s it follows that g vanishes to order p on 302 and 303 , while g = f = f1,T on

16
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ﬂ' , hence g = f,'s there. This makes it possible to write g on' 01 as a linear
combination fi.s of box splines whose support is entirely in ﬂi and whicl: are obtained
from the box splines listed in (15) by the linear change of variables which carries 01
to 01 « Because we chose the direction dy to appear exactly f£~-p times in the box
splines of degree L in (15), the box splines on Qi so obtained are, in general, not
translates of the ones in (15), but could be written as infinite linear combinations of
such translates.

It follows that £ = 11'.1. + '2,'1‘ + tl,s + £2's + £3’s « In this fashion, we can

as the span of % , the truncated powers listed in (14), and certain box

represent ° k

k,8
splines.

17
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3. Approximation order. In this section, we give upper and lower bounds for the

approximation order of the amooth pp space

(4]
"x,8 *

with 4 the three-direction mesh introduced in Section 1. The approximstion order of §

is, by definition, the integer m for which the following holds: For all sufficiently

smooth functions £ ,

aist(f, 5,) = o™

wvhile, for some c.-tunction £,

[‘ ' aist(f, 8) # o™ .
1 Here, the scale (Sh) of approximating spaces is generated from S by simple scaling,
: 8, 1= ah(s) A
with )
4 (o, £)(x) s= flm) , allf, x, h.
E . Purther,
- dist(f, U) 1= inf g, ¥ - ul,

- and I+l is the sup norm on some closed domain 8 ‘2 ’

3 if1 ;= ltl_’n 1= lup,enlf(x)l .

‘ In this definition, the approximation order depends on I , and rightly so. If, e.g.,
all the elements of S had their support in .’2 » then 8, would be entirely unable to
approximate to functions having some support in &2 +» hence might well have different -
approximation order depending on whether or not £ lies entirely in "2 . Por the

specific spaces =« or §. of interest hers, though, the approximation order is the

(]
k,4
same for any closed and bounded £ with some interior, since, for sufficiently small h

N . By is invariant under a suitable linear change of variables carrying one such 8 into
another.

Here is a simple necessary condition for the approximation order to be m .

| Lemma 3. Let U be a locally compact linear space of functions on R, let Q be a

-
. closed subset of " having 0 4in its interior, and assume that
18
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aist(f, u) = o™

for all sufficiently smooth £ . Then
€ v.

m-1
Proof. Assume without loss that p is a polynomial homogeneous of degree L < m . By
assumption, there exist const and u, & Uy, 8o that
L)
ip ~ “hl.,ﬂ € const h for all h .
Therefore
L
ip - 'h..,ﬁ/h € const h € const h ,
with
L
v, = wih)/n " ev,
using the fact that
2
p(h*)/h”™ = p .

This shows that w, converges to p uniformly on compact sets, hence p € U . 11

This simple necessary condition is far from sufficient, obviously. For example,
taking U = By ¢ VO obtain U, = U, all h , and this scale has approximation order 0 .
It is not clear at present what other conditions one should add to get necessary and
sufficient conditions for the approximation order to be at least m . Yet, Lemma 3 in
conjunction with Theorem 2 leads to a cloge-to~exact estimate of the approximation order
of S = ':,A in case p is maximal for the given k .

A lower bound for the approximation order of § can already be found in (BD; Theorem
4] where it is shown that, for all sufficiently smooth £ ,

dist(£, 8,) = o(h”*?) in case p = p(k) 1= |§2x-2)/3] . (1

We saw already in Section 1 that this is as large a p (= d-1) as we can choose and still
have box splines in S . Correspondingly, it is shown in [BD{ that, for p > p(k) , S has
approximation order 0 .

Obviously, (1) provides also the lower bound p(k)+2 for the approximation orxder of

8 1in case p < p(k) . But one would expect the approximation order of S8 to increase as

19
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p decreases. This increase cannot be seen merely by studying the approximation order of
SES s V(the way (1) is obtained). Por, [BH;;Sec.6] shows that the approximation order of
S; = span(H3(°-lz)) is 4+1 , with

d = k+1 - max(r,s,t)

in case

g = (d1xr, dzsl, d3:t) and r+s+t = k+2 ,

while, as discussed in Section 1, sE () C(d'” and no better. This means that a decrease
in p increases the number of different box splines Hg in 8 , but the approximation
order of the additional subspaces sa is less than the approximation order of those

already in S when p is maximal, i.e., wvhen p = p(k) .

It is the main goal of this section to provide an upper bound for the approximation
order of 8 which, in the case p = p(k) , is close to the lower bound (1). The proof idea
is simple: We show that the polynomials and truncated powers in S do not contribute to
its approximation order. This means that the approximation order is already determined by
the span

810c
of the box splines in S , and the discussion in Section 1 of the spaces SE spanned by
the translates of one such box spline ng allov; us to determine the maximal m for which
'm—1 is contained in 5., .

In view of (2.15), we set

= L Z, 8. (2a)
<k 1 s.l,!

sloc

with

- L L .
-1'z = (ci'...'ci*"#‘) and (‘1) = (418'#'91 datl-p' dz“.‘ - (2b)

Proposition 3.1. If dist(f, 8§) = o(h™) for all sufficiently smooth functions f£ ,

then =« . € 815 °

Proof. Let p be a sufficiently smooth function. By assumption, there exist const

and lhesh,lll h , so that

20




L]
ip - .hl € const h .

By Theorem 2, we can write

n T m vty
with

s}"-e °h(sloc) and s; e "'h('k +7T)

and T the span of certain truncated powers,
T = gpan{ Tx,z,:" - %) : 1=1,2,3; per<tk )
where
L~r, * \ r
Ty g, (%) ¢ (agx)""(ayx),” -

Therefore, for any positive n , the linear map

6§ = (8.4 a4 )
n nd, nd, nd,

with
Ayf 3= f(ety) - £
carries all of O T to zero (since k-p € k+1), as well as all of % . We conclude that

h k

23(k+1)conat hn .

IG“p - 61\"'0,0' <
with @' := {xe Q : dist(x, 32) > 3(x-p)n } .
For h € n/& , we have Gns' e °h(sloc) o In view of Lemma 3, it therefore suffices to
show that
LI € ran 6" .

But this is obvious since, for any y ¥ 0 and any r , AY maps ¥ onto LSRR H

Theorem 3. For p € pl(k) := |(2k-2)/3] , the approximation order m of § = l: A
’

satigsfies m e [p(k)+2, m(k)] , with

m(k) := min{2(k=-p), k+1} .

Proof. The lower bound for m is provided by (1). By Proposition 3.1, the upper bound

is established once we show that

"ak) F Sioc *

21
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/ 8 + Further, by (2), each box spline in §;,. involves each of the

"1 £ Broc
two directions 4,, d, at most k-p times. This shows that (0102))‘-" carries f €

Obviously,

8)5c toa distribution supported only on the meshlines of A . Consequently, 8, . cannot
contain the particular polynomial () kPX"P)  ihich is carried by (D1D2 )k-p to the

nontrivial constant function x\-—> (k-o)l2 At

The next proposition shows that the upper bound in Theorem 3 is sharp in the sense of

Proposition 3.1.

Proposition 3.2. For §,.. as given 2)

max{m : x €8, } = mx) := min{2(k-p), k+1} . (3)

Proof. The assertion is obvious for k = 0,1,2. Since we already know that
(k) [ S10c’ only have to show that ¥a(k)-1 € S15¢ °
Consider the box splines listed in (2). Specifically, chaoose 1 so that 31 1= gi,k
involves direction d, as little as possible yet at least once. Let (r,s,t) be its
direction multiplicities. Then r » 1 . Further, s+t = 2(k-p) as long as k¢2 > 2(k-p) .
In the contrary case, r = 1 and s+t = k+1 . Hence, in either case,
r=k-p+1 =151 and stt = m(k) . (4)
We conclude with (1.6) that
0O%es; for lal ¢m(k) and a(1) <r.
Indeed, each such polynomial is in ker D1r , and, as a polynomial of degree < m(k) = s+t ,
trivially in ker 0,%(0+0)" .
Assume that we already know that
O%e s, _ for lal <mk) and a(1) < r+y (s)
(as we do now for j = 0), If k-p > r+j , then, with (4), k~p > k~p + 1 - i + j , or,
i=3 > 1, hence we may consider Ei—j-‘l « Let (r+j+1, s', t') be its direction
multiplicities. Then

s'+t' = m(k) -3J-1.

22
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By the proof of Proposition 1, SE contains an element of
i=-3=1
o = 0P8+ apan{ 0T 4 vl = f8l, v(1) < )} (6)
provided (1) < r+j+1 and B(2) < s'+t' = m(k) - j - 1 . This implies that S

B3—4=1
contains an element of (6) for B(1) = r+j and |B8| < m(k) , and, on combining this with

(5), we conclude that (5) holds also with j replaced by j+1 .
This allows us to conclude that (5) holds for r+3 = k-p . But then, by symmetry, also
a
> k-
()" e Sloc for |a|l < m(k) and a(t) > k-p ,

and this finishes the proof. |||

For p = p(k) , the bounds in Theorem 3 are particularly tight. If i = -1, 0, 1

and k = 3p + i, then p(k) = 2u~1 + i . Therefore, for k = 3u + 1 , the approximation

p(k)
k,A

p(k)+3 . The particular case k = 3 is discussed in detail in [BH2] where it is shown

order of =« equals p(k)+2 = 2y+2 . For k = 3u , it lies between p(k)+2 and

that the approximation order of ¥ is only 3 (= p(3)+2) rather than 4 (= m(3)).

1
3,4
This is surprising and disappointing, since it shows that the simple mechanism on which
Proposition 3.1 is based is not sufficient to predict the approximation order. One might be
tempted to conclude from this example and from the case k = 3p+{ that the highest
approximation order obtainable from an sE in § determines the approximation order of
S itself, at least when p = p(k) . The simple example k = 2 contradicts this. In this
case, pl(k) =0 , i.e., p(k)+2 = 2 , yet local polynomial interpolation is well known to
provide approximation order 3 from continuous piecewise parabolic functions on any
triangulation A .

Por p < p(k) , the lower bound stays constant while the upper bound increases until
it reaches k+1 , exactly at the point where p is small enough so that, already for a
two-direction mesh [ , uz,x contains finitely supported functions (see [BD]). We

conjecture that the approximation order of P never differs from its upper bound

x,4
m(k) by more than 1 . Proof of this conjecture would require construction of a local

approximation scheme which makes use of much of 510c rather than just one S- .
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4. Minimality of support. In this section, we show that box splines in

(]
", 8

may or may not have minimal support, even in the very restricted setting of maximal

smoothness, i.e., when
p = o(k),

as we assume throughout this section. Precisely, we show that, for k = 1(3) , the sole box
spline in S8 has minimal support, while, for k = 0(3) , the box splines in S8 do not. In
the latter case, we show that a certain element first constructed in (Fr] has minimal
support as does its ‘flip'. In either case, the minimality allows us to conclude that
tranglates of the minimal support elements span the subspace of all finitely supported
elements of S . For the special cases k = 3 or 4 , this has also been proved in [cwzl.
The final case, k = 2(3) , gives a hint of the complications awaiting those wishing to
study the minimal support question for arbitrary p . We merely discuss the specific
choices k = 2, 5, 8, and state some conjectures concerning the general case.

We make use of the notation

Mr,s,t

for the box spline M with & = (d,:r, dzzs. dast) .

We say that f has minimal support in 8 if f € 8 and tw +nly g ¢ Z having
support strictly inside supp £ is g =0 . We say that f has unique minimal support
in 8 if fes and any g € S having support in supp £ is a multiple of f . Clearly,

any f having unique minimal support in S has minimal support in S .

Theorem 4.1. lLet Xk = 3p~2 and p = p(k) (= 2p=2) , and set 8§, = l: Al Then the
’
box spline M := M has unique minimal support in Sy
H,u,H
The proof depends on the following lemma, for which we recall the abbreviation

Q, = [v(1),v(1)+1]) x(v(2),v(2)+1]

24
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used in Section 2 for the particular mesh square whose lower left corner is the vertex v .
b
Lesma 4.1. Let 2 = coav{0, 3a,, 3a,+a,, dz} l.e, 8 = }-{) Q(v,0) e,
with 6 the triangle conv{jd1, jd1+d3. (j+1)d1} . Lot X 1=

{fla 1 fes, ,supp £C {x(2) > 1}JUR } . Then dim X = (J+1-u), .

Proof. Since k = 3u-2 and k - p = § , we conclude from (2.5) that 8(<k,0,p,0) {is
spanned by the single cone spline C := Cs with 3 3= (d1:n, d2: M, d3: ¥) . Thus, from the
argument for Proposition 2,

x = {te -pan(c(-(v,o))m)f,_o 1fg=01).
The cone spline C is homogeneous of degree k = 3y-2 and vanishes to exact order
p = 21~2 along l,d1 « Therefore
Clx = (v,0)) = ¢ (x= (vo 2N o 5((2)2* ) for xe 8
for some nonzero ¢ . The condition £ |e = 0 therefore implies the condition
I ayxtt)-w"'= 0 for xeo L

v=0

in case £ = tg 'vC( *-(v,0)) . Since the (univariate) polynomials ('-V)"-1

e V0,000,001,
are linearly independent over any open set, (1) constitutes min{j+1,u} independent
conditions on the coefficient vector (av) , and therefore
Aim X € (j+1 - u)+ .
The reverse inequality follows from the fact that, by Proposition 1, the box splines
M(* - (v,0)) , v=0,...,35-B , are independent over £ and their restriction to 2 lies

in x .11}

Corollary. If f € S, has its support in R,% , and its support in [0,M12 1lies

between the rays (u-‘l)c!1 + n+d3 and "“2 + l+°3 . then £ vanishes on all of [0,!]2 .

Proof. The given domain lies in the union of the sequence

a,

e 2, 8, 2, ..., 0 (2)

M-1
of sets

2. = (v,v) + conv{0, (u-1)d,. (u—1)41+a3

2 = (v,v#1) + conv{0, (¥=1)4,, (w=1)a,+d., 4.}
25 2 2 3 1
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(as illustrated in FPigure 4.1 for u = 2 and M = 4) to which we can apply Lemma 4.1 with
J = =1 in sequence, in order to conclude, step by step, that £ must also vanish on each

set in the sequence. |||

Pigure 4.1

Proof of Theorem 4.1. Assume that supp & supp X for some g € 8y . Lamma 4.1,
with j = u, implies that g = cM on @ := conv{(u=1,0), (u,0), (2u,u), (2u,u+1)} for
soms scalax c . Thus f := g ~ cM has support in the hexagon supp M \\ 8 . This hexagon
lies in a domain of the type described in the corollary to Lemma 4.1, thus allowing the

conclusion that g = M . |||

The unique minimality of the support of M and its translates implies that they form

a basis for the locally supported functions in 8, .

Proposition 4.9. PFor given convex % , (M(*-v) : v @ ’2 s supp M(°-v) Q} is a
For given convex < is a

basis for

8,[8 =~ {res :suprcal.

The proof of this corollary is analogous to the slightly more complicated proof of

Proposition 4.2 below and is therefore omitted.
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We now consider the slightly more complicated case k = 3p=3 with p = p(k) = 213 .

Set
(] 2p-3

So ** Tk,a T T3p3,ac

0
The box splines in 8¢ do not have minimal support. But an element Nu of unique minimal
support in S, is given by the rule
1 if xe conv{O,d1,dj)
N1(x) = '
0 otherwise (3)

: . .
N\H-i = “V H""' foxr ven

Figure 4.2

Here, * indicates convolution. The function Nu seems to have been considered first by
Frederickson [Fr] and later, independently, by Sabin (S8i], and thence in [Sl1] and [Fa].
While the support of Nu hags some symmetry, it is asymmetric with respect to A . Pigure
4.2 shows the support of N, . In general, the support of N " is circumambulated by
walking alternatively up and u-1 steps in the directions d,, d:i' dzv -4,, -d3, -dz,
starting at the origin. Because of the asymmetry, the element N'u given by the rule

N;I(x) 1= Nu(x(Z),x(i)) (4)
is essentially different from Nu + Together, they provide a local basis since they are
closely related to the box splines in Sy ¢ Convolving the obvious identitiesg

[} L} - .
Mp v H T Myn0 0 Wyt NGUOCa) M g0 0 Hplend)) 4N Mg e
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with u1'1’, , we obtain the identities

+ ]
N, "u "u. Y, =1
N+ N'(e4d M 5)
u "u( 1) W =1, {
o= + N'
"u( tl2’ u “n-i.u.u

Theorem 4.2. Let k = 3u-3 and p = p(k) = 2-3 , and let S5, := -: p Then N
’

given by (3) has unique minimal support in S, .

The proof of Theorem 4.2 is based on the following lemma and its corollaries.

Lemma 4.2. Let Q@ and X be as in Lemma 4.1, but with 8, replaced by 8y - Then

dim X = (3+1 - y)_ + (542 - w, .

Proof. Since k = 3u-3 and k-p = u , we conclude from (2.5) that 8(<k,p,p,p) is
spanned by the two cone splines C,, C,4 corresponding to the direction multiplicities

(u,u=1,u) and (u=-1,u4,u) , respectively. Thus, from the argument for Proposition 2,

- [ 23 ' j -
X {t e span(ci( (v,o))m)i_a'“_o : ‘|6 o},

with 0 := conv(jd1, ja +a,, (j+1)d1} . Because C; 1is homogeneous of degree 31-3 and

3

vanishes to exact order p+i = 2u~-3 + i along &61 » we have

Colx(v,0)) = cp(x=tv,0)) ¥ 1202, a(x=(%,0)) "2y g (x(2)2)
C xm(v,0)) = o (x(v,0)) W22 g(y(2)2")
for xe 0 and some ¢y, ¢y ¥ 0 . The condition
f ;=13 .\u.ci(. - {v,0)) = 0 on ©
therefore implies that
T oa,(x(1)-v) =0
Vo for xe 0.

e )(x(1) - V)2 = o

i
zo (ay095 *+ 240,

(v
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These are min{3+1, u} + min{j+1,u~1} 1linearly independent conditions on the 2(j+1) -
vector (nu) of coefficients and therefore
dim X <€ (j*1 - u)+ + (342 - W,
The reverse inequality follows since
“u(. - (v,0)) , v=0,.00,3=4, and NLP - (0,v)) , vO0,cec,3¢1=
are independent over £ and their restriction to @ 1lies in X . Their linear
independence follows from the fact that, by (5), N and NL agree near the origin with

N
Cy and C, , respectively. |||

Corollary 1. let & and 6 be as in the lemma, but with j = p-1 , and let Q' and

6' be their image under the 'flip' x |~ (x(2),x(1)) +1f f es; has support in
{x(1), x(2) » 1}URVA* , then £ vanishes already on 8VS&' .

Proof. Much as in the proof of Lemma 4.2, we conclude that, on VvV Q' ,

£ = a . c +a.c, + L (a ,c (=(v,0))+ac (=(0,v))
0070 0171 0<wu V1 i vi~i
i=0,1
subject to the conditions that
> .W(xm V) = 0 for xe® (6a)
wu
2
E (avo o * 8, 1)(::(1) - v)"' = 0 for xe 0 (6b)

for some c4 ¥ 0, while, with ‘01 ™= a5y i=0,1, also
) a' (x(z) - V)u—1 = 0 for xe @ {(6'a)
t (l

18+ ale )(x2 - V¥ 0 for xe o . (6'b)

Note the reversal in tho role of the second subscript, due to the fact that

Cyix) = C,_*(x(z),x(l)) .
We conclude froam (6a) that a, " 0, all v, and from (6'a) that a:n =0, all v. In
particular, c"" = ag, = 0 . Therefore (6b) implies that also a, " 0, all v, and,

likewise, (6'b) implies that a:m =0, all v, |||
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Corollary 2. 1f f € S, has its support in l,.,z and its support in [0,!]2 lies
between the rays (u-1)d‘ + .+dJ and (n-i)d2 + R4, , then £f=0 on to.m2 .

Proof. The given domain is contained in the union of the sequence

Q

o 01, cee, &

M-1
of sets
Qv = (v,v) + QNVQ* ,
with QUfl' as in Corollary 1, to wvhich we can apply Corollary 1 in sequence, in order to

conclude that f must vanish on each ﬂv « |l

Proof of Theorem 4.2. Assume that supp g & supp “u for some g € S, . By Lemma
4.2, g= N on Q := conv{(y-1,0), (»,0), (2p-1,1=1), (2p-1,W)} . This implies that £ :=

g=-cN es5, has support in the domain described in Corollary 2 to Lesma 4.2, hence must

u
be zero. ||}

We now show that the elements with unique minimal support form a basis for all locally

supported elements of so .

Proposition 4.2. Por given convex 2 , a basis for SR := {t e 8, : supp tc Q) is

provided by the collection of all N (*=v), Ni(*v) , ve ¥, in s (8 .

Proof. Assume without loss that R3¢ (0,12 and let fe 8,(9) Dbe given. Since N,
u; agree near the origin with the respective cone splines Cor C4q » the argument for
Proposition 2 leads to the conclusion that there is a unique linear combination

g := H (agm (e=v) + a'N'(e=v)) N
veto, a2 VP v
which agrees with £ on [(),l‘l-zln-»z]2 « This implies that f-g has support only on

[o,u]’\[o.n—zwz]z « Application of Corollary 2 to Lemma 4.2 therefore proves that f-g
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has no support in {x(1) € M-2u+2} and, with this, a second application of that corollary
shows that f-g has no support in {M-2u+2 € x(1) < M} either. Therefore f = g .
Let fI' be the convex hull of the union of the supports of all the Nu( ~v) and
N;‘('-v) which appear in (7) with nonzero coefficients. Then Q' is a polygon. We claim
that Q' € @ . It is obvious from the construction of g that any lower left corner of
2" must lie in supp f , hence in @ . But since g 1is uniquely determined, this

implies, using the mesh symmetries, that all six kinds of corners of 8° lie in Q , hence

so does R' . |||

Pinally, we consider the irregular and rich case k = 3u=1 , for which p(k) = 2p-2 ,

Set

(k) 242
2 " ",a T Maet,80

There are three independent cone splines of degree k at a lower left corner, but, because
p(k) .is so low, there is also an additional cone spline of degree k=1 in S, . This means
that a search for a basis for S, (8] would have to come up with four unique minimal
support elements per vertex. This, as it turns out, is not possible if we stick with the

definition of "minimal support” given earlier.
i / V..V

/1

Figure 4.3
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Already the case k = 2 of continuous parabolic splines provides the necessary
illustrations: A suitable basis for 82[9] is provided by the translates of four functions
whose supports are drawn in Figure 4.3. These functions are obtainable as the Lagrange
functions of standard local parabolic interpolation (at the vertices and the edge midpoints
of each triangle). The first three have unique minimal support. But the fourth function's
support is made up of six triangles and could accomodate each of the other three's much
smaller support, hence it fails to be minimal.

In this case and others mentioned later, it is possible to recapture unique minimality
of support by referring to the support of the associated B(ernstein or -ezier)-net of the
pp functions instead. In any case, the support of the various box splines of degree 2 in
5, is far from minimal since it contains ten triangles.

The next case, k = 5 , hence p(k) = 2, provides the additional unhappy surprise that,
in this case, S, contains an element supported on just one hexagon (i.e., on six
triangles). This element occurs already in [Sl). Because its support coincides with that
of H1'1’1 , this element cannot be obtained from a parabolic one by convolution. The same
is true of the next two "minimal support” elements whose supports coincide with that of

Nu and NL respectively (see Pigure 4.2). The fourth "minimal support™ element is
derived from, and has the same support as, "2,2,2 .

The next case, k = 8, is easy since its four "minimal support" elements can be
obtained from those for k = 5 by convolution with H1','1 .

This pattern repeats: For odd u , the four "minimal support" elements can be obtained
from the preceding case by convolution with M1'1'1 « For even u , enough local degrees of
freedom have been accumulated to make possible elements in S, of yet smaller support than

is had by the elements obtained from the preceding case by convolution with My g4
7%
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